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Abstract

Electron paramagnetic resonance (EPR) spectra of S = 1/2 systems XLn with n equivalent nuclei having spin I = 1/2 have been
simulated for microwave frequencies in the L-, X-, and W-bands. It has been shown that for n > 2 nuclei, the EPR spectra have a
more complicated form than anticipated from the usual oversimplified analysis, which predicts n + 1 lines with intensity ratios given
by the coefficients of the binomial expansion. For the XLn system with n = 3, the EPR spectra in fact consist of six lines. The exact
solution of the spin-hamiltonian for this case has been obtained, which gives four levels in zero magnetic field. For n > 2 systems, the
degeneracy of the energy levels cannot be completely removed by the Zeeman electronic and nuclear interactions. For n > 4, certain
spin states cannot occur, consistent with the (generalized) Pauli exclusion principle. Discussion of the underlying theory, invoking
exchange degeneracy and the appropriate permutation group theory, is included in some detail. Analogous considerations hold for
NMR spectroscopy of non-radicals.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

There are numerous examples in the literature and
textbooks describing the electron paramagnetic reso-
nance (EPR) spectra of S = 1/2 systems in which there
occur several equivalent (isochronous) nuclides with
spin I = 1/2. Many of these appear oversimplified [49,
pp. 58–59; 40, pp. 12–13; 22, pp. 44–45; 4, pp. 81–83;
50, pp. 120–121; 45, pp. 21–23; 19, pp. 50–57]. In reality,
they can be far more complicated than is commonly
realized, and we wish herein to address ourselves to this
situation, from the viewpoint of spin theory. As models,
we shall consider paramagnetic S = 1/2 chemical species
XLn, where the nucleus of a single central atom is spin-
less, and where attached atoms L each have nuclear spin
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of 1/2. Thus, the spin-hamiltonian operator opHs is rel-
atively simple, containing no quadrupole or higher-spin
terms.

The emphasis herein is not on the occurrence and nat-
ure of the higher-order contributions to the hyperfine
splittings, which are well known [(e.g., see 19, pp. 45–
47; 49, pp. 72–73)], but rather is on the occurrence of
certain energy degeneracies, as well as the absences of
certain spin states, occurring in some situations. Thus,
the emphasis herein is on group-theoretical results. Part
2 of the present work [NW05] will present details of
transition energies and intensities.

We shall begin by considering species with XL3, stud-
ied by EPR spectroscopy since the 1950s, and typified by
the free radicals 12C1H3 and

28Si1H3, or their fluorinated
equivalents. We shall ignore low-temperature consider-
ations, i.e., quantum-statistical effects [33,37,23,27,29,
53,30], and shall focus on freely rotating (thus isotropic)
systems.
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A Zeeman energy-level diagram for n = 3 is shown in
Fig. 1, and a closer-up view of these levels at appropriate
magnetic field B showing possible EPR transitions is
given in Fig. 2. Here (with four spins of 1/2 each) there
are 16 spin states and hence, in principle,
2n (2n+1 � 1) = 120 magnetic-resonance transitions
could occur. We note that 12 of these are significant
for pure EPR, yielding six distinct lines.

It should also be said that the considerations of the
present paper apply equally well to liquid-phase or
gas-phase pure nuclear magnetic resonance (NMR)
spectroscopy, e.g., the AX3 (and AB3) case such as affor-
Fig. 1. The Zeeman energy-level diagram for the hypothetical isotro-
pic species XL3 having one unpaired electron (g = 2.0030) and three
equivalent I = 1/2 nuclides (using gn for

1H). Here A/gebe was taken to
be +0.500 mT (A/h = 14.0 MHz). The field-independent degeneracies
are at the right. The appropriate labels for the states at B = 0 are, in
order of increasing energy: F = 1,0,1,2.

Fig. 2. Schematic of the typical energy levels of species XL3 and the 12
primary EPR transitions between them, depicted for the X-band
region (9.40 GHz). The digits in the first column at right are the
degeneracies. The labels at the far right for the states are: Zero-field F,
MF, Irred. Repr. of Permutation Group P3. The lines occur at 334.55,
335.05 (4 + 1 transitions), 335.55 (4 + 1 transitions) and 336.05 mT,
with A/gebe taken to be +0.500 mT, and g = 2.0030. The relative
intensities, provided by program EPR–NMR, are 0.250, 0.250 + 0.387
(set of four), 0.250 + 0.705 (set of four), and 0.250. Clearly, the
conditions imposed here are not yet very close to the high-field limit.
ded by 15NH3 [41, pp. 101, 196; 24] as well as
31PH3 and

31PF3 [20], and also by 11BF3 [25]. Examples of AX4 are
furnished by 15NH4

+ in water [43, p. 89] and by gaseous
13CH4 [25].
2. Experimental

The production of various energy-level diagrams, and
generation of required magnetic resonance spectra, was
carried out by use of our in-house FORTRAN program
called EPR–NMR [36]. This program performs exact
numerical diagonalizations of the Hs matrices, thus tak-
ing into account all higher-order energy contributions,
and generates relative intensities as well as all magnetic
resonance line positions.
3. The chemical systems

3.1. Next, we examine some examples of XL3 species

The methyl free radical has been much studied, very
fruitfully since it is far from a simple system. Its equilib-
rium geometric configuration has symmetry D3h, i.e., it
is planar [9]. Its spin-hamiltonian parameters when the
molecule is freely rotating are g = 2.0024 [26] and
A/gebe = �2.31 mT for 1H [14; PF87, p. 52]; these
parameters depend slightly on temperature [55] and sol-
vent matrix. They do not exhibit appreciable anisotropy
even at 4 K [37].

When observed at sufficiently high temperatures,
12C1H3 are said to yield a four-line EPR spectrum (nom-
inal intensity ratios 1:3:3:1). In reality, it only ap-
proaches this nominal perfection at sufficiently high
magnetic fields. At (say) X-band, the middle two lines
are in fact in some systems actually split into two, due
to higher-order hyperfine effects, as discussed in the lit-
erature [1,14,39,46,8,18,16] and below.

The free radical CF3 too has been much studied
[32,42,15,16]. Its parameters are anisotropic, with
g = ca. 2.0036, and |A|/gebe = ca. 14.5 mT for 19F. Its �ge-
ometry� is pyramidal. The relatively largemagnitude ofA,
as compared to that of CH3, produces relatively easy-to-
detect splittings of the central lines of the �quartet.�

Other XL3 species include SiH3 [37,19, p. 188], SiF3

[50, p. 144], and SF3 [45, p. 66], as well as NH3
+ [54].

3.2. The system XL4

In Fig. 3, we show the Zeeman-energy-level scheme
for XL4. We see that there are 32 spin states, with
field-independent degeneracies: six states of three, two
states of two, and 10 non-degenerate.

Chemical examples include CH4
+ [19, p. 375] and

PH4 [10], and of course the elusive NH4 radical.



Fig. 3. The Zeeman energy-level diagram for the hypothetical isotro-
pic species XL4 having one unpaired electron (g = 2.0030) and four
equivalent I = 1/2 nuclides (using gn for

1H). Here, A/gebe was taken to
be +0.500 mT (A/h = 14.0 MHz). The field-independent degeneracies
are given at the right.

1 Assignment of the correct sign to hyperfine coupling parameters is
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3.3. The system XL5

Here there are 64 spin states, with field-independent
degeneracies: four states of 5, eight states of 4, 12 non-
degenerate.

Chemical examplesareSF5 [45,p.68]andPF5
� [38],but

these do not exhibit equivalence of all five fluoride ions.

3.4. The system XL6

Finally, we encounter the important system XL6, for
which there are very numerous examples: e.g., L = F
with X = Cl, Br, I, and, Mo, W, Y, Xe, As, Sb, S, and
Se, Te, and Bi, Pb, Tl, and of course U, Np, occurring
as neutral or ionic species, many carrying a single un-
paired electron. In some of these species, at sufficiently
low temperatures, there tends to be distortion to yield
molecules with D4 symmetry, having two uniaxial equiv-
alent fluorides differing from the four equivalent co-pla-
nar fluorides placed normal to the axis (which thus
exhibit exchange degeneracy). At higher temperatures,
all six fluoride anions move sufficiently so as to become
equivalent (time-average octahedral symmetry), leading
to greater exchange symmetry. Thus, in the limit as
the mean life-time of the three ground-state D4 configu-
rations goes to zero, XL4L

0
2 becomes XL6. As an exam-

ple, we cite the X = halogen species [6].

not an entirely trivial matter [27,2,49]. Changing the sign of A reverses
the order in which the energy levels occur (e.g., in Fig. 1), which is most
easily visible at or near B = 0. The order of the EPR peaks is reversed,
i.e., the low-field end versus the high-field end, but this is not
discernible experimentally unless the nuclear Zeeman term in Hs yields
effects of the same order-of-magnitude as the hyperfine term. In
principle, the sign can be obtained by observing the relative population
of the spin states at or near B = 0, i.e., line intensities. It is possible to
predict the sign of A from theory, especially if accurate calculations of
core-polarization effects are feasible.
4. The spin systems

The XLn systems feature (2S + 1)(2I + 1)n spin states.
The states can be labeled with the total spin angular-mo-
mentum operator opS +

P
i=1,n

opIi ” opF for each sys-
tem, and the corresponding primary quantum numbers
F. The number of ways in which a spin value F may
be realized out of an assembly of N ” n + 1 spins
1/2 is [28, pp. 214–215] given by k (F) ” (2F + 1) N!/
{[(N/2) + F + 1]![(N/2) � F]!}; compare with Eq. (5).

Using the formula for k (F), taking n = 3 as an exam-
ple, one finds that there is one way only to construct a
state with F = 2, three with F = 1, and two with F = 0.

At the limit B = 0 of the external magnetic field, the 16
states of XL3 occur at energies �5A/4 (one F = 1 state),
�A/4 (two F = 0 states), +A/4 (two F = 1 states), and
+3A/4 (one F = 2 state), as shown in Fig. 1 (and see
Appendix A in Part 2 of the present work). In the above,
A is the isotropic hyperfine coupling energy parameter
[see Eq. (1b) and Footnote1]. The quantum number F

is not valid for non-zero magnetic fields B, and hence is
not meaningful as a state label (Fig. 2) when n > 1 except
via parentage (tracing back to B = 0); however, its
projectionMF is available for all B. Note the extra degen-
eracies (exchange degeneracies [3, p. 391; 34, pp. 431,
507–508]), occurring besides the MF degeneracy 2F + 1
present at B = 0 (the latter only is lifted by B > 0).

It may be of some interest to note that in the unphys-
ical case A = 0 „ gn, field-independent degeneracy occurs
even for XL2 (two doublets), which is lifted by the
hyperfine interaction. For XL3, A = 0 implies presence
of two triplets.

For XL4, there are 32 states (Fig. 3) featuring
zero-field energies �3A/2 (F = 3/2), �A (F = 1/2),
0 (F = 1/2), +A/2 (F = 3/2), and +A (F = 5/2). Among
the B-field-independent degeneracies, there are six triply
degenerate sets.

The high-field electron spin resonance spectra of sys-
tems with equivalent nuclei should generally be inter-
preted in terms of spin-hamiltonian

opHs ¼opHZ þ opHhf ð1aÞ

¼ gbeB
T � opS� gnbnB

T �
X
i¼1;n

opIi

 !

þ AopST �
X
i

opIi: ð1bÞ

Here operator opHZ represents the Zeeman interactions
of the unpaired electron, and also of the nuclear spins
respectively, with the external magnetic field B, while
opHhf [second term in (1a)] describes the hyperfine cou-
pling between the electron and the nuclear spins. Super-
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script T denotes spatial matrix transposition. The nucle-
ar spin–spin interactions have been neglected in (1a), but
see Part 2 of the present work.

It is sufficient for our present purposes to consider the
EPR spectrum of a system with n equivalent nuclei in the
high-field case (since usually parameter A is sufficiently
small, this is the most common experimentally observed
situation). It is then usual to approximate (opSTÆ

P
i
opIi)

by term (opSz
opIz), where

opIz is taken to be
P

i
opIi is

the total z component operator of the nuclear spin angular
momentum. Furthermore, we neglect the nuclear Zeeman
term as small compared to the electronic Zeeman energy.
As a result, the EPR spectrum is the well-knownmultiplet
of equally spaced lines described by transitions between
the energy levels E (Sz, Iz) = gbeBSz + ASzIz. In this
approximation, the unpaired electron with a given value
MS (= Sz) experiences nuclear magnetic spin (MI)i (=Iz).

In the high-B region, i.e., above all the level crossings
(B above ca. 4|A|/gebe; where ge is the free-electron Zee-
man splitting factor, and be is the Bohr magneton; Figs.
1 and 3), the states can be labeled by sets of the second-
ary quantum numbers MS and MI, where the spin quan-
tization is best taken along B, and where MS +

P
i=1,n

(MI)i = MF.
For n = 3, at sufficiently large B fields, the states can

be taken as ‘‘degenerate’’ manifolds with 1:3:3:1 relative
energies for each of MS = �1/2 and +1/2. The field-
swept EPR allowed transitions then consist nominally
of four equally spaced absorptions, with relative intensi-
ties 1:3:3:1. The spacing is A/gebe in magnetic-field units.
This four-line spectrum is depicted frequently in the lit-
erature, e.g., [49, p. 59], and thus constitutes �common
knowledge� for virtually all EPR spectroscopists.

However, the reality often differs appreciably from
this ideal spectrum, at usual microwave frequencies
(X-band: 9–10 GHz). This is caused by line shifts and
splittings that can be represented by 2nd-order and high-
er perturbation energy expressions, which go to zero as
B goes towards infinity; for example, see [13,47]. The
spectra will be described in more detail below, along
with specific chemical examples.

To enter the realm of NMR spectroscopy, we have
simulated [36] a 300 MHz spectrum (very similar to
the EPR spectrum, say, of CH3) for the hypothetical
chemical species H(H)3 [see Footnote

2 for some details],
2 According to Program Spartan �04 Windows [44] using the 6-
311 + G** basis set for diamagnetic species H4, the following results
are valid. For a system XL3 featuring a central atom X = H attached
covalently to three coplanar atoms L = H would exhibit system
symmetry D3h with predicted energy �2.1632 a.u. relative to the total
energy of the bare protons and electrons, all infinitely far apart (bond
lengths 1.857 Å). A tetrahedral system XL4, with X empty and four
ligands L = H, would have energy �1.7256 a.u. (X � L distances
1.516 Å, bond L � L lengths 2.475 Å). For comparison, the energy
calculated with Spartan for the H2 molecule is �1.1325 a.u. (observed
�1.1664 a.u.).
where the three 1H nuclides were taken to be equivalent.
Here, the relevant spin–spin coupling parameter J was
chosen to be 10 Hz, and the full lorentzian linewidth
0.06 Hz. We note that the theory setout herein for
EPR converts to NMR by replacing gbe with gnbn,
and A with nuclear spin–spin coupling parameter J,
and (of course) opS with opI.

Returning to EPR, for the case of n = 3, the first-ap-
proximation theory gives four distinct energy levels for
each value Sz, which correspond to MI = +3/2 (singlet),
MI = +1/2 (triply degenerate), MI = �1/2 (triply degen-
erate) andMI = �3/2, and the EPR spectrum which con-
sists of four-lines with relative intensities 1:3:3:1.
However, the calculated energy-level diagram (see Figs.
1 and 2) does not show triply degenerate states, but rather
these levels are split into a singlet and a quartet each.

This behavior can be qualitatively explained using
group-theoretical analysis. The XLn system is invariant
with respect to any permutation of equivalent nuclei.
The spin-hamiltonian (1) must remain unaltered under
these permutations. Then each of the individual state
functions or sets of degenerate functions must transform
in the same way, as one of the symmetry species of the
appropriate permutation group Pn [51], and states that
belong to different symmetry species cannot ‘‘interact’’
with one another, i.e., both cannot appear as compo-
nents in the same energy eigenvector.

As stated above, for XL3, the three nuclei with spin
1/2 yield total spin z components MI of +3/2, +1/2,
�1/2, and �3/2. One then finds:

(a) For MI = ± 3/2, there is only one state �function�
each (which is the product of three nuclear sin-
gle-spin kets):

þ3=2j >� j þ þþ >; ð2aÞ
�3=2j >� j � �� >; ð2bÞ

(b) For MI = ± 1/2, there are three basic product
functions each:
þ1=2j>j¼1;2;3¼jþþ�>;jþ�þ>; and j�þþ>;

ð3aÞ
�1=2j>j¼1;2;3¼j��þ>;j�þ�>; and jþ��>:

ð3bÞ

The latter two sets of functions each form a reduc-
ible representation of the symmetry group P3. The
deconvolution of such representations into irre-
ducible ones, for the groups Pn (with
n = 3,4,5,6) is described in Section 5.
5. Group theory of the general XLn problem

We need to deal with the symmetric (permutation)
groups Pn relevant to the nuclear-spin system consid-
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ered. The order of each such group is n! and each has nc
classes (see Table 1), and thus nc irreducible representa-
tions (species). However, with spin systems such as ours,
the number of species actually needed may be less than
nc (see Table 1). Some states are excluded, consistent
with the operation of the generalized Pauli principle
[52, p. 128]. The details are set by the fact that all the nu-
clei involved have spin 1/2.

The number na of irreducible representations (sym-
metry species) Ca can be obtained ([21, p. 105; 28, p.
334]) from the group-theory formula

na ¼ ð1=cÞ
X
C

ccvcv
a
c ; ð4Þ

applicable for determination of the number of times any
given symmetry species is contained in any given group
representation. Here, c is the number (n!) of operations
in the group, cc is the number of operations in each class
[C], vc are the characters for the various classes of per-
Table 1
Reduced character tables of permutation groups Pn

Group P2

1 (12) 1 (2)
+D(0) 1 1 A1
�D(0) 1 �1 A2

Group P3

1 (13) 3 (2,1) 2 (3)
+D(0) 1 1 1 A1
�D(0) 1 �1 1 A2
+D(1) 2 0 �1 E

Group P4

1 (14) 6 (2,12) 3 (22) 8 (3,1) 6 (4)
+D(0) 1 1 1 1 1 A
�D(0) 1 �1 1 1 �1 A
+D(1) 3 1 �1 0 �1 T
�D(1) 3 �1 �1 0 1 T
+D(2) 2 0 2 �1 0

Group P5

1 (15) 10 (2,13) 15 (22,1) 20 (3,12) 20 (3,2) 3
+D(0) 1 1 1 1 1
�D(0) 1 �1 1 1 �1 �
+D(1) 4 2 0 1 �1
�D(1) 4 �2 0 1 1
+D(2) 5 1 1 �1 1 �
�D(2) 5 �1 1 �1 �1

Group P6

1 (16) 15 (2,14) 45 (22,12) 15 (23) 40 (3,13) 12
+D(0) 1 1 1 1 1
�D(0) 1 �1 1 �1 1 �
+D(1) 5 3 1 �1 2
�D(1) 5 �3 1 1 2
+D(2) 9 3 1 3 0
�D(2) 9 �3 1 �3 0
+D(3) 5 1 1 �3 �1

The rows list the irreducible representations required in our problem. The co
each. Below this number, the class, having a 1-cycles, b 2-cycles, c 3-cycles,
suppressed when equal to 1). Also included on the right are some commo
script ± on the species symbol D(q) (q = 0,1, . . . ,n 0 6 n) indicates a member
mutations, and vac are the species characters as tabulated
for each group [21, pp. 185–188]. Symbol a labels the
symmetry species.

The number j(MI) of ways in which the nuclear spins
can be arranged to give particular value of MI is

j ¼ n!=f½ðn=2Þ þMI �!½ðn=2Þ �MI �!g; ð5Þ
so that the degeneracy of the energy levels is determined
by this number, as are the relative intensities of the EPR
lines. Thus, for XL3, j = 1 & 3 for |MI| = 3/2 & 1/2.

For our purposes, following Wigner�s lead [52; Chap-
ter 13; also see 35, vol. 2, Appendix D, #18], we note
that the system of n equivalent nuclei can be represented
as having n variables each of which can only assume
either of two values. Then the relevant space consists
of 2n points, and we can have 2n linearly independent
functions. Denote by ui and vi, respectively, the states
of the ith individual spin corresponding, respectively,
to the eigenvalues +1/2 and �1/2 of Iz. An orthogonal
1

2

1

2

E

0 (4,1) 24 (5)
1 1
1 1
0 �1
0 �1
1 0
1 0

0 (3,2,1) 40 (32) 90 (4,12) 90 (4,2) 144 (5,1) 120 (6)
1 1 1 1 1 1
1 1 �1 1 1 �1
0 �1 1 �1 0 �1
0 �1 �1 �1 0 1
0 0 �1 1 �1 0
0 0 1 1 �1 0
1 2 �1 �1 0 0

lumns represent the group classes, giving the number cc of elements in
etc. (see Footnote 3), is designated by (1a, 2b, 3c, . . .; the superscript is
nly used symbols for the irreducible representations. The pre-super-
of an associated pair (see text).



3 In a frequently used notation for permutations, these are resolved
into cycles [21, pp. 13–24; 31, pp. 538–541]. A cycle is a permutation
which replaces every element by the element following it, except that
the last element of the set is replaced by the first element. All
permutations which have the same cycle structure form a conjugate
class in group Pn. The degree of the cycle is the number of letters within
the parentheses. Note that a symbol (1a) denotes a cycles of degree 1,
while a symbol such as (ac)(b) (for n = 3) signifies simultaneous
presence of two cycles in a class.
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basis is obtained by taking all possible products of n of
these u and v state vectors (kets). Thus, the product

fM ¼ u1u2 � � � un�kvn�kþ1 � � � vn ðwhere k ¼ 0; 1; . . . ; nÞ
ð6Þ

not only is a function within this basis but also is an
eigenstate of the component Iz of the total nuclear spin
operator; the corresponding eigenvalue is MI = (n/2)
� k. In this notation, the function fM when k = 0 is
the product of all n kets ui and contains no kets vi,
and similarly fM when k = n is the product of all n kets
vi. The number of functions which correspond to any gi-
ven MI (all those with the same k) is binomial coefficient
CðkÞ

n ¼ n!=½k!ðn� kÞ!�. It is convenient to group all func-
tions fM with identical MI values into single rows,
arranging the 2n functions in a set of rows labeled with
increasing k values.

If the operator opP(R), corresponding to any given
permutation R of the n nuclei, is applied to one of the
functions fM, it produces a new function which can be
expressed as a linear combination of the 2n basis func-
tions. The coefficients will give a 2n-dimensional repre-
sentation of the symmetric group Pn. This
representation D(R) is not irreducible, except in the triv-
ial n = 1 case. Because the functions considered are de-
fined in such narrowly limited space, one finds that
D(R) does not contain all the irreducible representations
of the symmetric group and, therefore, that generally it
can be reduced more easily than a completely arbitrary
representation. The irreducible representations are de-
scribed in detail by Wigner [52, pp. 128–139]. It turns
out that, if the operator opP(R) is applied to one of
the functions fM, where R is any arbitrary permutation,
the result is again a product of spin kets with the same
value of MI. If one wishes to express in terms of the ba-
sic product functions those CðkÞ

n functions which result
from applying opP(R) to all the functions having the
same number k, only the functions with this value of k
need be used. These functions, therefore, provide a rep-
resentation D(k)(R) of the symmetric group, with dimen-
sion CðkÞ

n . Since each function in the kth row is
transformed by a permutation into another function in
the kth row, D(k)(R) has one element in each row equal
to 1 and all other elements equal to 0. The representa-
tion D (R) therefore decomposes into representations
D(0)(R), D(1)(R),. . ., and D(n)(R). It is clear that D(k)(R)
is not necessarily an irreducible representation, since lin-
ear combinations which transform under opP(R) accord-
ing to D(k� 1)(R) can be formed from the kth row, and
this would not be possible in an irreducible representa-
tion. In Wigner�s book [52, pp. 131–133], it is shown
that, for k 6 n/2, the Cðk�1Þ

n functions form a linearly
independent set. Furthermore, the representation
D(k)(R) divides into two representations, D(k� 1)(R) and
D(k)(R), with dimensions Cðk�1Þ

n and CðkÞ
n � Cðk�1Þ

n , respec-
tively. The representation D(k � 1) (R) divides into
D(k � 2) (R) and D(k�1) (R), and so on. Finally, D(k) (R) di-
vides into D(0) & D(1) &� � �& D(k). The function in the
kth row which transforms according to species D(0) is
the �sum� of all functions in this row.

As shown in Wigner [52, p. 127], if there is an irreduc-
ible representation D(k), then another representation, the
representation D(k)assoc associated with D(k), can be
formed from D(k) by leaving unchanged all matrices
which correspond to the even permutations, and multi-
plying all others (odd permutations) by �1. Pairs of
associated species will henceforth be denoted by ±D(k).
The above considerations hold for k 6 n/2. For
k > n/2, the C(k) functions in which n � k variables as-
sumeMS = �1/2 and k variables haveMS = +1/2 trans-
form exactly like the functions belonging with k < n/2.

It is worthy of note that decomposition into irreduc-
ible representations for each permutation group Pn can
be done using Eq. (4), which allows one to determine
the number of times any given symmetry species is con-
tained in any given group representation. The characters
of the species were determined using a procedure de-
scribed by Wigner [52, pp. 138–139], and given in Table
1. In these tables, the elements of the permutation
groups are grouped into classes, and the number cc of
operations in each class [C] is indicated. The description
of the classes can be found elsewhere [21, pp. 23–28]
(also see Table 2).

As a simplest example, we can consider XL2 [For
some other details, see [49, pp. 465–468], and set out
the appropriate table

Dð0Þ ¼ Dð0Þ;

Dð1Þ ¼ Dð0Þ;

Dð2Þ ¼ Dð0Þ:

Here symbol D(0) in all three rows represents +D(0) for
the triplet of states all symmetrical under particle L
interchange, and D(0) in the middle row also represents
�D(0) for the single antisymmetrical state.

For the system XL3, the relevant symmetry group is
P3, which consists of the six permutations grouped into
three classes as shown by brackets (see Table 1 and
Footnote3):

[(1)] (identity element), [(123), (132)], [(12), (23), (13)].
Typically for n > 2 [35, vol. 2, Appendix D, #18], when
considering pairwise interchange of the nuclei L, one finds



Table 2
The resolution of the representations D(p) (p = 0,1, . . . ,n) of the
symmetric groups Pn into irreducible representations D(q)

(q = 0,1, . . . ,n 0
6 n)

n = 2
D(0) = D(0)

D(1) = D(0)

D(2) = D(0)

n = 3
D(0) = D(0)

D(1) = D(0) & D(1)

D(2) = D(0) & D(1)

D(3) = D(0)

n = 4
D(0) = D(0)

D(1) = D(0) & D(1)

D(2) = D(0) & D(1) & D(2)

D(3) = D(0) & D(1)

D(4) = D(0)

n = 5
D(0) = D(0)

D(1) = D(0) & D(1)

D(2) = D(0) & D(1) & D(2)

D(3) = D(0) & D(1) & D(2)

D(4) = D(0) & D(1)

D(5) = D(0)

n = 6
D(0) = D(0)

D(1) = D(0) & D(1)

D(2) = D(0) & D(1) & D(2)

D(3) = D(0) & D(1) & D(2) & D(3)

D(4) = D(0) & D(1) & D(2)

D(5) = D(0) & D(1)

D(6) = D(0)

Here the pre-superscript ± on symbols D (compare Table 1) have been
suppressed.
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no antisymmetrical state(s). However, the species +D(0)

(alias jA1>; see Table 1) is symmetrical for all three such
interchanges. The other species show no symmetry, i.e.,
are neither symmetrical or antisymmetrical. The detailed
functions will be given explicitly in Part 2 of this work.

The three nuclei, each with spin 1/2, yield total z com-
ponents MI of +3/2, +1/2, �1/2, �3/2. One then finds:

(a) For MI = ± 3/2, there is only one state function
each (which is the product of three single-spin kets,
labeled k = 0 and 3, respectively [Eqs. (2a) and
(2b)]. Each of them forms the irreducible represen-
tation D(0). Obviously there is only one state with
MI = +3/2 and one with MI = �3/2.

(b) For MI = ±1/2, there are three basic nuclear spin
product functions each, as given above [Eqs. (3a)
and (3b)]. The latter two sets of functions (they
correspond to k = 1 and 2) each form a reducible
representation D(1) of the symmetry group P3. This
representation decomposes into two irreducible
representations, D(0) and D(1), having dimensions
1 and 2 (Table 2). We can see that the three prod-
uct functions with MI = +1/2 can be combined to
give one linear combination in the completely sym-
metric species D(0), and one degenerate pair in spe-
cies D(1). The three nuclear spin states with
MI = �1/2 can be combined in the same manner,
in complete analogy to those with MI = +1/2.
One can summarize the occurrence of the irreduc-
ible representations for n = 3 via Table 2.

It follows from the above that the energy levels which
correspond toMI = +1/2 and �1/2 are not triply degen-
erate (as often intimated in the literature) but rather are
split into a singlet and a doublet each, by the hyperfine
and Zeeman interactions, as shown in Figs. 1 and 2.
Consequently, the EPR spectrum consists of six lines.
However, the splitting of each of the two middle lines
can be observed only when the hyperfine parameter
A/gebe is not too small compared to gbeB0; here B0 is
the position of the center of the field-swept spectrum.

An alternative labeling of the 16 states is using quan-
tum numbers F and MF, plus the irreducible representa-
tion of permutation group P3 (see Fig. 2). Note that the
transitions 1, 2, 3, and 6 labelled according to increasing
field line positions are between states of type A, while 3
is for type E between states labeled with different F val-
ues, while 5 is also of type E but occurring between
states of the same F. Thus, there is an inherent asymme-
try: for the experimental spectrum, see [15; 49, Fig. 3.16
on p. 73].

5.1. Systems XLn with n greater than three can be

considered in the same fashion

Thus for n = 4 equivalent nuclei, the relevant permu-
tation group is P4, and application of group-theoretical
consideration to this 16-state nuclear-spin system (Fig.
3) reveals that the decomposition of representations
D(R) takes the form given in Table 2. Here, the dimen-
sions of irreducible representations D(0), D(1), and D(2)

are 1, 3, and 2, respectively (Table 1). The values of j
are 1 & 4 & 6 for |MI | = 2 & 1 & 0. The state with
MI = +2 (k = 0) forms a singlet state of species D(0);
the four states with MI = +1 (k = 1) can be combined
to give one linear combination in the completely symmet-
ric species D(0) plus species D(1) (triplet state); the six
MI = 0 (k = 2) nuclear states yield a singlet, a triplet
and a doublet. Similarly, the four states MI = �1
(k = 3) lead to a singlet and a triplet, and MI = �2
(k = 4) gives a singlet.

For n = 5 equivalent nuclei, the representation D(R)
within permutation group P5 decomposes as shown in
Table 2. Here, D(0) denotes the irreducible representa-
tion of dimension one, D(1) of dimension four, and
D(2) of dimension five. It shows that the state with
MI = +5/2 (k = 0) forms a singlet, the five states
MI = + 3/2 (k = 1) give one singlet and one quadruplet.
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The 10MI = +1/2 (k = 2) nuclear states give one singlet,
one quadruplet, and one quintet. Once again, theMI < 0
states behave analogously.

For n = 6 equivalent nuclei (XL6), one obtains the
pattern shown in Table 2. The dimensions of the irre-
ducible representations D(0), D(1), D(2), and D(3) are 1,
5, 9, and 5, respectively (see Table 1).

Note that, for n > 4, the number of allowed irreduc-
ible representations of symmetric groups Pn is less than
the number of classes in the group, as one can see from
Table 1. As stated above, this phenomenon results from
operation of the Pauli exclusion principle. As described,
one notes that the described treatment does not need to
invoke all the irreducible representations of the symmet-
ric group Pn. This is related to the fact that a spin-1/2
particle can assume only two possible spin variables,
and, consequently, only representations, along with
their associated representations, corresponding to the
partition of n into sums of the numbers 1 and 2 (see
Appendix A) can occur.

Obviously, and extension of the present work to al-
low ligand symbol L to represent groups of equivalent
nuclei would be of interest, but is not tackled herein.
1 2 n 1 2 n
6. Recoupling theory

There is an alternative approach to the problem dis-
cussed herein, as pointed out by a knowledgeable ref-
eree. This invokes ‘‘re-coupling’’ of the angular
momenta vector (spin) operators present, using theory
set out in the literature [5,12]. An example seems appro-
priate here.

For XL3, one can recouple the three (I = 1/2) nuclear
spins to yield four states belonging to Itotal = 3/2, and
two states with Itotal = 1/2. With addition of the electron
spin, one achieves new total angular momentum quan-
tum numbers, F 0 = 2 and 1. Since there is available
[7,48,11] an exact energy solution for a single unpaired
electron and a single nuclear of arbitrary spin, these
two manifolds can be be solved exactly, yielding (of
course) the same energies as via our present method
(i.e., Figs. 1 and 3). The energy solutions occur in pairs,
i.e., as functions of MF 0 but not of F 0, containing ±

p

terms. Always, one of the pairs for MF 0 = ± F 0 is an
unphysical solution. Thus, for F 0 = 2, there will be eight
valid solutions, and for F 0 = 1 there will be four. There
are two identical F 0 = 1 manifolds (hence, double degen-
eracy), so that a total of 16 energies occur, matching the
previous results in this paper, for XL3. In Fig. 1, the lev-
els in the region 0 < B < 0.25 mT, in the order of increas-
ing energies, can be labeled with F 0 = 2, 2, 2, 1, 1, 2, 2, 2,
1, 1, 2, 2. We note that MF is identical with MF 0 and
that, in these two separate n = 1 systems, F 0 is a good
quantum number for all B. It is planned to present fur-
ther discussion in Part 2 of this work.
7. Conclusions

We have investigated in some detail the theory under-
lying the energy-level schemes of chemical entities XLn

having equivalent ligands, and have clarified the nature
of certain effects found in their magnetic-resonance spec-
tra, which cause complications spoiling the commonly
expected simplicity of such spectra. The effects of per-
mutation between equivalent particles have been found
to be important, and are discussed in terms of exchange
degeneracy and the underlying group theory. It is found
that, for n > 4, some irreducible representations of the
symmetric group Pn do not occur, due to the operation
of the generalized Pauli principle. Exact solutions have
been found for the spin-hamiltonian energies, and are
given in Part 2 of the present work, as are details of tran-
sition energies and relative spectral intensities.
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Appendix A

The permutations of symmetric group Pn operate on
a total of n symbols. Suppose that we resolve the permu-
tations into independent cycles and let the number of 1-
cycles be m1, of 2-cycles be m2, . . . , of n-cycles be mn. The
group is said to have the cycle structure (1m1,2m2, . . . ,nmn).
Since the total number of symbols is n, we must have

m1 þ 2m2 þ � � � þ nmn ¼ n:

All those permutations of Pn, which have the same cycle
structure form a class in this group, and each solution
for positive integers m1,m2, . . . ,mn yields a class in Pn. If
we let
m1 þ m2 þ m3þ � � � þmn ¼ k1;

m2 þ m3þ � � � þmn ¼ k2;

� � �
mn ¼ kn;

then

k þ k þ � � � þ k ¼ n and k P k P � � � P k P 0:
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The splitting-up of positive integer n into a sum of n
integers is called creating a partition of n. Each class
in Pn corresponds to a certain partition of n, and thus
the problem of finding the number nc of classes of con-
jugate elements in Pn is transformed to the problem of
partitioning n.

A given partition {k1,k2, . . . ,kn} may be represented
by a helpful diagram Yk, called a Young tableau [17,
21, and 35, vol. 2, Appendix D, #14], made up of n

squares arranged in n rows placed one above the other,
the first line having k1 squares, the second k2 squares,
. . ., the nth kn squares. Two partitions which are ob-
tained from each other by interchange of all rows and
columns are called �associated.� Since the number of irre-
ducible representations of the symmetric group Pn is
equal to the number of its classes and therefore to the
number of partitions of n, each irreducible representa-
tion of Pn may be uniquely characterized by a Young
diagram. Then any two associated irreducible represen-
tations ±D(k) (k = one of 0,1, . . . ,n) correspond to asso-
ciated Young diagrams.

For the system of n spin-1/2 equivalent particles, the
single-particle ket can occur in either one of only two
forms. The Young diagram for such a system can have
at most two rows, and only partitions into sizes (k) 1
and 2 are possible. Because of this, not all nc irreducible
representations of the symmetric group Pn can occur for
this system, for arbitrary n.

Moreover, each type of Young diagram corresponds
to the total spin I of a system comprised of n equivalent
spins. The Young diagram with n � k squares in one line
and k squares in another corresponds to a total spin
I = (n/2) � k.

For n = 2, there are two partitions, {2} and {1,1},
which can be represented by the Young diagrams with
one row of two squares in line (I = 1), and two rows with
one square each (I = 0). The three linearly independent
symmetrical states are connected with I = 1 and belong
to irreducible representation +D(0), and the one antisym-
metrical state, connected with I = 0, belongs to irreduc-
ible representation �D(0) of the symmetric group P2.

For the systems with n > 2, the number of possible
types of Young diagrams is equal to number partitions
n into values 1 and 2. This number is (n/2) + 1 for even
n, and (n + 1)/2 for odd n. These diagrams correspond
to states with total spin I = (n/2), (n/2) � 1, . . . ,0 (for
an even number of particles) or (1/2) (for an odd num-
ber of particles). The states with total spin I belong to
irreducible representation +D(k) with k = (n/2) � I. It is
clear that the spin functions (kets) of n spin-1/2 particles
can be antisymmetrized only with respect to two parti-
cles, but not with respect to all n particles.

It can be shown that there is no independent linear
combination of spin states in a system with n > 2, which
corresponds to an antisymmetrical irreducible represen-
tation �D(k). Since

+D(k) and
�D(k) are associated, the
Young diagrams which correspond to them also must
be associates. Thus, if the Young diagram with length
n � k of the first line corresponds to the irreducible rep-
resentation +D(k), then the Young diagram which corre-
spond to �D(k) must contain n � k lines, the smallest
number of lines is expected at k = n/2 for n even or
(n + 1)/2 for n odd?, but this number will be larger than
two, except of two cases: when n = 3, k = 1, and n = 4,
k = 2. The Young diagrams in these two cases are self-
associated and the correspondent irreducible representa-
tion �D(1) is equivalent to

+D(1) for group P3, and
�D(2)

is equivalent to +D(2) for P4.
References

[1] F.J. Adrian, E.L. Cochran, V.A. Bowers, ESR Studies of
Inorganic Free Radicals in Photolytic Systems, Chapter 5 in �Free
Radicals in Inorganic Chemistry,� Advances in Chemistry Series
#36, Am. Chem. Soc., Washington, DC, USA 1962.

[2] N.M. Atherton, Principles of Electron Spin Resonance, Ellis
Horwood, PTR Prentice Hall, New York, USA, 1993.

[3] G. Baym, Lectures on QuantumMechanics, W.A. Benjamin, New
York, USA, 1969.

[4] M. Bersohn, J.C. Baird, An Introduction to Electron Paramag-
netic Resonance, W.A. Benjamin, New York, USA, 1966.

[5] L.C. Biedenharn, J.D. Louck, The Racah-Wigner Algebra in
Quantum Theory, Topic 12, Addison-Wesley, Reading, MA,
USA, 1981, pp. 435–481.

[6] A.R. Boate, J.R. Morton, K.F. Preston, EPR spectra of hexaflu-
oride radicals, J. Magn. Reson. 29 (1978) 243–249.

[7] G. Breit, I.I. Rabi, Measurement of nuclear spin, Phys. Rev. 38
(1931).

[8] S.W. Charles, P.H.H. Fisher, C.A. McDowell, Electron spin
resonance study of the photolytic decomposition of CF3I in inert
matrices between 4.2 K and 35 K, Chem. Phys. Lett. 1 (1967) 451–
454.

[9] T. Cole, H.O. Pritchard, N.R. Davidson, H.M. McConnell,
Structure of the methyl radical, Mol. Phys. 1 (1958) 406–409.

[10] A.J. Colussi, J.R. Morton, K.F. Preston, The ESR spectrum of
PH4, J. Chem. Phys. 62 (1975) 2004–2006.

[11] R.S. Dickson, J.A. Weil, Breit-Rabi states of atomic hydrogen,
Am. J. Phys. 59 (2) (1991) 125–129.

[12] A.R. Edmonds, Angular Momentum in Quantum Mechanics,
Princeton University Press, Princeton, NJ, USA, 1957.

[13] R.W. Fessenden, Second-order splittings in the ESR spectra of
organic radicals, J. Chem. Phys. 37 (4) (1962) 747–750.

[14] R.W. Fessenden, R.H. Schuler, Electron spin resonance studies of
transient alkyl radicals, J. Chem. Phys. 39 (9) (1963) 2147–2195.

[15] R.W. Fessenden, R.H. Schuler, ESR spectra and structure of the
fluorinated methyl radicals, J. Chem. Phys. 43 (8) (1965) 2704–
2712.

[16] R.E. Florin, D.W. Brown, L.A. Wall, Gamma-irradiation of
small molecules at 4 and 77 K, J. Phys. Chem. 66 (1962) 2672–
2676.

[17] W. Fulton, Young Tableaux, with Applications to Representation
Theory and Geometry, Cambridge University Press, Cambridge,
UK, 1997.

[18] G.B. Garbutt, H.D. Gesser, Electron spin resonance studies of
methyl radicals stabilized on porous VYCOR glass: various
surface interactions, second-order splitting, and a linewidth-
temperature study, Can. J. Chem. 49 (1970) 2685–2694.

[19] F. Gerson, W. Huber, Electron Spin Resonance Spectroscopy of
Organic Radicals, Wiley-VCH, Weinheim, Germany, 2003.



218 S.M. Nokhrin et al. / Journal of Magnetic Resonance 174 (2005) 209–218
[20] H.S. Gutowsky, D.W. McCall, C.P. Slichter, Nuclear magnetic
resonance multiplets in liquids, J. Chem. Phys. 21 (2) (1953) 279–
292.

[21] M. Hamermesh, Group Theory and Its Applications to Physical
Problems, Addison-Wesley, Reading, MA, USA, 1962.

[22] M. Ikeya, New Applications of Electron Spin Resonance, World
Scientific, Singapore, 1993.

[23] G.S. Jackel, W. Gordy, Electron spin resonance of free radicals
formed from group-IV and group-V hydrides in inert matrices at
low temperature, Phys. Rev. 176 (1968) 443–452.

[24] C.J. Jameson, A.K. Jameson, S.M. Cohen, H. Parker, D.
Oppusunggu, P.M. Burrell, S. Wille, Temperature dependence of
the15N and 1H nuclear magnetic shielding, J. Chem. Phys. 74 (3)
(1981) 1608–1612.

[25] A.K. Jameson, J.W. Moyer, C.J. Jameson, Variations of chemical
shielding with intermolecular interactions and rovibrational
motion. IV. 11B and 13C nuclei in BF3 and CH4, J. Chem. Phys.
68 (6) (1978) 2873–2877.

[26] C.K. Jen, S.N. Foner, E.L. Cochran, V.A. Bowers, Electron spin
resonance of atomic and molecular free radicals trapped at liquid-
helium temperature, Phys. Rev. 112 (4) (1958) 1169–1182.

[27] L. Kevan, L.D. Kispert, Electron Spin Double Resonance
Spectroscopy, John Wiley, New York, USA, 1976.

[28] L.D. Landau, E.M. LifshitzQuantum Mechanics—Non-Relativ-
istic Theory, vol. 3, Addison-Wesley, Reading, MA, USA, 1958.

[29] J.Y. Lee, M.T. Rogers, Tunneling rotation of the methyl radical
in solids, J. Chem. Phys. 65 (2) (1976) 580–581.

[30] A. Lund, M. Shiotani (Eds.), EPR of Free Radicals in Solids:
Trends in Methods and Applications, Kluwer Academic Publish-
ers, Dordrecht, The Netherlands, 2003.

[31] H. Margenau, G.M. Murphy, The Mathematics of Physics and
Chemistry, D. Van Nostrand Co., New York, USA, 1943.

[32] J. Maruani, C.A. McDowell, H. Nakajima, P. Raghunathan, The
electron spin resonance spectra of randomly oriented trifluorom-
ethyl radicals in rare-gas matrices at low temperatures, Mol. Phys.
14 (4) (1968) 349–366.

[33] H.M. McConnell, Free rotation in solids at 4.2 K, J. Chem. Phys.
29 (1958) 1422.

[34] E. Merzbacher, Quantum Mechanics, John Wiley, New York,
USA, 1961.

[35] A. Messiah, Quantum Mechanics, John Wiley, New York, USA,
1965.

[36] M.J. Mombourquette, J.A. Weil, Program EPR–NMR, Depart-
ment of Chemistry, University of Saskatchewan, Saskatoon, SK,
Canada, 1996 (available from JAW).

[37] R.L. Morehouse, J.J. Christiansen, W. Gordy, ESR of free
radicals trapped in inert matrices at low temperature: CH3, SiH3,
GeH3, and SnH3, J. Chem. Phys. 45 (5) (1966) 1751–1757.
[38] J.R. Morton, K.F. Preston, S.J. Strach, EPR spectra in gamma-
irradiated KPF6 and KAsF6, J. Magn. Reson. 37 (1980) 321–
330.

[39] G.B. Pariiskii, G.M. Zhidomirov, V.B. Kazanskii, Electron
paramagnetic resonance spectrum of the methyl radical adsorbed
on a silica-gel surface, J. Struct. Chem. 4 (3) (1963) 364–367.

[40] C.P. Poole Jr., Electron Spin Resonance—A Comprehensive
Treatise on Experimental Techniques, second ed., John Wiley,
New York, USA, 1983.

[41] J.A. Pople, W.G. Schneider, H.J. Bernstein, High-Resolution
Nuclear Magnetic Resonance, McGraw-Hill, New York, USA,
1959.

[42] M.T. Rogers, L.D. Kispert, Trifluoromethyl, and other radicals,
in irradiated single crystals of trifluoroacetamide, J. Chem. Phys.
46 (8) (1967) 3193–3199.

[43] J.K.M. Sanders, B.K. Hunter, Modern NMR Spectroscopy,
second ed., Oxford University Press, Oxford, UK, 1993.

[44] Program Spartan �04—Windows Version, Wavefunction, Irvine,
CA, USA (2004).

[45] M.C.R. Symons, Chemical and Biochemical Aspects of Electron-
Spin Resonance Spectroscopy, John Wiley (Halsted), New York,
USA, 1978.

[46] J. Turkevich, J. Fujita, Methyl radicals: preparation and stabil-
ization, Science 152 (1966) 1619–1621.

[47] J.A. Weil, Comments on second-order spin-hamiltonian energies,
J. Magn. Reson. 18 (1975) 113–116.

[48] J.A. Weil, The analysis of large hyperfine splitting for paramag-
netic resonance spectroscopy, J. Magn. Reson. 4 (1971) 394–399.

[49] J.A. Weil, J.R. Bolton, J.E. Wertz, Electron Paramagnetic
Resonance—Elementary Theory and Practical Applications, John
Wiley, New York, USA, 1994.

[50] W. Weltner Jr., Magnetic Atoms and Molecules, Dover, New
York, USA, 1983.

[51] H. Weyl, The Theory of Groups and QuantumMechanics, Dover,
New York, USA, 1950, Chapter V.

[52] E.G. Wigner, Group Theory and Its Application to the Quantum
Mechanics of Atomic Spectra, Academic Press, New York, USA,
1959.

[53] T. Yamada, K. Komaguchi, M. Shiotani, N.K. Benetis, A.R.
Sørnes, High-resolution EPR and quantum effects on CH3,
CH2D, CHD2, and CD3 radicals under argon matrix isolation
conditions, J. Phys. Chem. A 103 (1999) 4823–4829.

[54] J.-T. Yu, J.-H. Chang, Electron paramagnetic resonance obser-
vation of NHþ

3 free radicals in gamma-ray irradiated NH4ClO4

single crystals, Chin. J. Phys. 14 (1976) 68–73.
[55] I.A. Zlochower, W.R. Miller Jr., G.K. Frenkel, Temperature

dependence of the hyperfine splitting of the methyl radical, J.
Chem. Phys. 42 (1965) 3339–3340.


	Magnetic resonance in systems with equivalent spin-1/2 nuclides. Part 1
	Introduction
	Experimental
	The chemical systems
	Next, we examine some examples of XL3 species
	The system XL4
	The system XL5
	The system XL6

	The spin systems
	Group theory of the general XLn problem
	Systems XLn with n greater than three can be considered in the same fashion

	Recoupling theory
	Conclusions
	Acknowledgments
	Appendix A
	References


